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Nowadays, a goodness digital compactness measure is necessary in computer vision, shape analysis and computer 
medical diagnosis process where digital picture are used widely. We introduce a compactness measure called Normalized 
E-Factor which shows as a measure robust to translations, rotations and scale-changes and that it satisfies the set of 
criteria for a good compactness measure. Through a series of experiments, we show that the Normalized E-Factor is useful 
for shape description, measuring digital compactness with or without holes and that it overcomes some drawbacks that 
present several compactness measures over digital space. 
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1. Introduction 
 
Shape classification is an active research area in 

pattern recognition. Many applications can be found in 

areas such as manufacturing, medical diagnosis, chemistry 

and so on. Several object descriptions have been 

developed. They can be grouped into two categories: 

region-based and contour-based [35]. Region-based 

descriptions use both boundary and interior shape 

information to generate shape descriptors. In this category, 

a simple shape descriptor has shown its strategic role in 

shape classification: shape compactness [32, 12, 3 and 17]. 

Shape analysis starts in the field of psychology where 

Attneave and Arnoult used shape compactness as a 

quantitative descriptor [1]. Since then, shape compactness 

has been used as a shape descriptor for shape analysis. For 

instance, the medical area uses this feature to assess the 

spread of tumors [5]. Also, it is used to measure the 

biocompatibility of new materials which are used for 

medical devices [25] or for quantitative studies of cell 

shapes [33], evaluation of mandibular symmetry [11] and 

so on. Moreover, this feature is crucial in some chemical 

processes [31 and 2] or geological applications [24]. 

Although many measures of shape compactness have 

been proposed [16 and 27], this feature is often associated 

with the ancestral and well known isoperimetric ratio: 

𝐴/4𝜋𝑃2, where 𝐴 is the shape area and 𝑃 is its perimeter 

[10, 13 and 14]. The isoperimetric ratio gets its minimum 

value if the shape is a circle. This approach for measuring 

shape compactness has the following advantages: It is 

dimensionless, invariant to rotation, translation and scale 

changes and it is demarcated by the circle. However, 

Rosenfeld showed aberrant effects when isoperimetric 

ratio is applied on digital regions. Moreover, he showed 

that under this approach there are shapes with lower values 

of compactness than digital disks [29]. This fact has 

motivated to several research propose technique for 

measuring shape compactness on digital regions.  

In digital space, at least eleven proposals can be 

found. They can be grouped into three major categories: 

inner distance, reference shape and geometric pixel 

properties [26]. Inside of the inner distance approach, we 

can find the circularity measure, 𝐶, by Haralick [15]; the 𝐺 

Factor proposed by Danielsson [8]; a set of circularity 

measures designed by Di Ruperto and Dempster [9] and 

the measures of compactness based on border-to-border 

distances by Wahl [34]. However, Montero and Bribiesca 

showed that circularity measure, 𝐶, has a strong 

dependence on the sample resolution of the digital region 

[26]. Meanwhile, Shape Factor 𝐺 and the measures 

proposed by Wahl use a distance transform which 

increases the complexity of this simple feature. Finally, the 

best measure of DiRuperto and Dempster has several 

inconsistencies [26].  

In the case of the approach based on reference shape 

we find the Digital Compactness Measure designed by 

Kim [18], the circularity measure by Bottema [4] and the 

compactness measure of Peura and Iivarien [28]. In 

general, these measures compare a digital region with a 

digital or continuous circle. One problem with this 

approach is that there are different digital regions that can 

be representations of a digital circle. 

Finally, the geometric pixel property approach has 

shown to be an adequate method to evaluate shape 

compactness [3, 5 and 26]. In this category we can find the 

Discrete Compactness of Bribiesca and the area-perimeter 

ratios of Bogaert. These measures take the structure of the 

cells with the digital region is formed. The area-perimeter 

ratios are compactness measures not invariant to resolution 

changes; meanwhile Discrete Compactness was designed 

to be robust at this transformation. 

In this paper, we propose a compactness measure for 

digital regions robust at translations, rotations, and scale 
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transformations. We named it Normalize E-Factor (𝑁𝐸𝐹). 

By showing that the 𝑁𝐸𝐹 is robust to scale changes we 

apply it to shape classification. We also show that the 

𝑁𝐸𝐹 increases classifier efficiency when adding it to the 

shape description vector.  

The rest of this paper is organized as follows. In 

Section 2, necessary definitions are given. Sections 3 and 

4 are devoted to introduce the new shape compactness 

measure. Experimental results are given in Section 5, 

while Section 6 provides the conclusions and directions for 

further research. 
 

 
2. Boundary of a digital region materials and  
    methods 
 
The perimeter and the area of a shape have shown to 

be fundamental geometric features in the design of 

compactness measures [16]. In the digital space, a shape or 

region is thought as a subset of regular cells under an 

adjacency relation; this relation defines a connectedness 

relation between region cells [19]. Traditionally, two 

connectedness relations are used, 4 and 8-connected. 

However, the perimeter of a digital region does not have a 

unique definition whether these relations of connectedness 

are used.  

Rosenfeld describes three different manners for 

measuring the length of the contour of a digital shape: the 

sum of the lengths of the crack codes of all pixels on the 

border of a digital shape, the sum of the areas of the border 

pixels and whether the digital shape is considered as a set 

of lattice points, the sum of the edge lengths of the border 

points [30].  

In order to obtain a unique definition of the perimeter 

length, a digital topology based on a grid cell model was 

proposed by Kovalevsky [20, 21, 22 and 23]. This 

topology defines a digital region as a set of discrete 

elements named k-cells where the basic element is the 0-

cell which is a vertex; a pair of 0-cells defines a edge, 

called 1-cells and the area that forms a set of four 1-cells is 

named 2-cell where a grid point is the center of a 2-cell 

[19]. Finally, a set of six 2-cells forms a 3-cell in the three-

dimensional digital space. Under this digital topology, the 

perimeter and the environment area, of a 2D and 3D 

digital shape respectively, have a unique definition.  

In order to define the perimeter of a digital region it is 

necessary to define the concept of boundary of a region: 

 

Definition 1 (Kovalevsky). Let 𝑆 be a digital region 

formed by a set of 0, 1, 2-cells and let 𝐵 be a set of 0 and 

1-cell subset of 𝑆 where each element of 𝐵 is incident both 

element of 𝑆 and its complement 𝑆′. Then, 𝐵 is called the 

boundary of S, 𝐵(𝑆). 

 

Then, the perimeter of 𝑆 can be stated as: 

 

Definition 2. The perimeter of 𝑆, 𝑃(𝑆) is the number 

of 1-cells in 𝐵(𝑆). 

In the case of the area of a digital shape, a common 

definition is the sum of the unitary area of the pixels of a 

digital shape. According to Kovalevsky’s digital topology, 

the area of a digital shape 𝑆 is the number of its 2-cells 

Bribiesca showed how the area of a digital shape may be 

represented by a linear expression [6]. This linear 

expression of the area is known as the Contact Perimeter. 

Following Kovalevsky’s approach we can define the 

contact perimeter as: 

 

Definition 3. Contact perimeter. Let S be a digital 

shape, then the contact perimeter, Pc(S), is the difference 

of the number of 1-cells of S and B(S). 

 
 
3. Compactness 
 

Compactness is a concept that tell us how disperse or 

compact a shape is. More than ten ways have been 

described to measure this concept [26]. The most 

referenced expression to obtain a quantitative parameter is 

the well-known perimeter-area ratio. This ratio was named 

classical compactness measure by Rosenfeld [29], yet it is 

named circularity measure, thin factor, roundness measure 

or circularity index [26], There several manners, the most 

popular is the following: 

 

𝐶 =
𝑃2

𝐴
                                       (1) 

 

This way to measure shape compactness can be show 

to be, in a continuous space, invariant to rotations, scales 

changes and translations. Moreover, 𝐶 gives its minimum 

value when the shape is a circle. However, the measure 

loss its proprieties when is applied to a digital image. In 

continuous space the equation (1) is consistent for the 

shape is built up by an infinity number of points, yet 

digital regions are formed by a finite number of cells. 
 

 
 

Fig. 1. Exponential effect of the classical compactness  

measure over digital shapes with different resolutions (color 

online) 

 

The equation (1) is a ratio of two areas. One of the 

characteristics with this way to compute shape 

compactness is that as the resolution of the shape 
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augments, the impact over the computation tends grows 

exponentially. Fig. 1 shows the resolution effects over 

digital square shapes at different resolutions. 

As mentioned before, several compactness measures 

for a digital region have been reported. However, only a 

few of them are invariant to scale transformation. In [26], 

authors show that the most robust measure is the 

Normalized Discrete Compactness (NDC) which is also a 

ratio of areas.  

The NDC compares the shape area with the area of the 

closest square. This comparison by means of a linear 

expression of areas of both shapes is named contact 

perimeter. The compact perimeter 𝐶𝐷 is the number of 

sides connecting the cells composing the shape. For an 

example, refer to Fig. 2(a). This has 7 contact sides, drawn 

in bold. According to [6], the compact perimeter, 𝐶𝐷 for a 

given shape can be obtained by means of the following 

expression: 

 

𝐶𝐷 =
𝑇𝑛−𝑝

2
                         (2)                                                        

 

with 𝑛 representing the number of pixels of the shape, 𝑇 

defining the number of sides of the composing cell (𝑇 = 4 

for a square cell or pixel), and 𝑝 is the number of external 

sides of the shape, e.g., the number of sides directly in 

contact with the shape background. Thus, for the shape 

shown in Fig. 2(a): 𝐶𝐷 =
𝑇𝑛−𝑝

2
=

4×7−14

2
= 7. Compare 

with the number of sides drown in bold for the shape 

depicted in Fig. 2(a). 

The NDC uses the contact perimeter, 𝐶𝐷 to measure 

the compactness of a shape. Justo to remember, according 

to [6], the NDC, 𝐶𝐷𝑁 of a shape can be computed as: 

 

𝐶𝐷𝑁 =  
𝐶𝐷−𝐶𝐷𝑚𝑖𝑛

𝐶𝐷𝑚𝑎𝑥 −𝐶𝐷𝑚𝑖𝑛

.                         (3) 

 

with 𝐶𝐷𝑚𝑖𝑛
= 𝑛 − 1 and 𝐶𝐷𝑚𝑎𝑥

=
𝑇𝑛−4√𝑛

2
 expressing, 

respectively, the minimum and maximum values that 𝐶𝐷𝑁 

can get. 

Equation (2) however exhibits the following 

phenomenon at the moment of computing the shape 

compactness. Consider, for the example, the two cases 

depicted in Fig. 2(b) and 2(c), respectively. As can be 

seen, the first shape is an elongated one while the second 

shape is not. Intuitively, the second shape is more compact 

than the first one, thus a bigger compactness value should 

be obtained for this shape. However, we can easily see that 

for both shapes: 

 

𝐶𝐷 =
𝑇𝑛−𝑝

2
=

4×5−12

2
= 4, 

𝐶𝐷𝑚𝑖𝑛
= 𝑛 − 1 = 5 − 1 = 4 and 

𝐶𝐷𝑚𝑎𝑥
=

𝑇𝑛−4√𝑛

2
=

4×5−4√5

2
, thus: 

𝐶𝐷𝑁 =  
𝐶𝐷−𝐶𝐷𝑚𝑖𝑛

𝐶𝐷𝑚𝑎𝑥 −𝐶𝐷𝑚𝑖𝑛

=
4−4

4(5)−4√5

2
−4

= 0        (4) 

Both results are correct; however, we can observe that 

two completely different shapes (one elongated and one 

not elongated) get the same compactness value of 0.  

For elongated shapes as the one shown in Fig. 2(b) 

according to [6] this would be a desired result; however, 

the value computed for a shape as shown in Fig. 2(c), in 

terms of shape classification, would not be a good one. 
 

 

 
 

Fig. 2. (a) Contact sides of a shape composed of seven 

pixels. (b) A digital shape where NDC obtain a 

compactness value equal to zero 

 

Next, we introduce a compactness measure based on a 

perimeter ratio which is sensitive to border changes but 

robust to changes of resolutions on digital shapes. 

 

 
4. Normalized E-factor 
 

One limitation of many compactness and circularity 

measures is the resolution of digital region, which limits 

its applicability in many situations. A common solution to 

overcome this drawback is to make a comparison between 

the digital shape under consideration and a reference 

digital shape [6, 16, 27]. In the case of a digital space, this 

reference could be a digital square or cube. This 

comparison must be made with the same number   of 

elements pixels or voxels [6, 7]. 

In order to make a measure invariant to translations, 

rotations and scale changes, we decided to use a perimeter-

based approach. We measured shape compactness as the 

ratio of two perimeters: the perimeter of the shape divided 

by the perimeter of a reference shape, a square shape in the 

2-D case and a cube, in the 3-D case. In the 2-D case, the 

reference shape has as many 2-cells as the shape under 

study. In the 3-D case, the reference cube has also as many 

3-cells as the shape under study.  

The proposed ratio is named Normalized E-Factor 

(NEF) and is given by: 

 

𝑁𝐸𝐹 =
𝑃𝑠ℎ𝑎𝑝𝑒

4√𝑛
                (5)                

 

which is a ratio between the perimeter of the digital shape 

under consideration and the perimeter of a square with the 

same number of elements as the original shape. In 3-D 

digital space, the NEF-3D is the ratio of enclosing surface 

areas and is given as: 

 

𝑁𝐸𝐹 − 3𝐷 =
𝐴𝑠ℎ𝑎𝑝𝑒

𝐴𝑐𝑢𝑏𝑒
=

𝐴𝑠ℎ𝑎𝑝𝑒

3(𝑛−( √𝑛
3

)2)
 (6) 

 

If the 2-D shape under study has a number of 2-cells, 

n, which is not 1,4,9,16, …, the reference shape is chosen 
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as the square composed of  m=int(n) cells. The same is 

applicable for the 3-D case. 

In order to illustrate the behavior of the NEF we 

computed for the shapes of Fig. 2. It is clear that these 

shapes could have different compactness values, however, 

in the case of the NDC, the set of shapes we got the same 

compactness value of zero. However, in the case of NEF 

the object from Fig. 2(a) gets a value of 1.75, while for the 

objects of Figs. 2(b) and 2(c) we obtain the same value of 

1.5. 

Besides, the proposed compactness measure satisfies 

the seven criteria for a good measure of compactness 

given in [37]. 

1. Be resolution independent. That is, the threshold 

used to discriminate circular from non-circular shapes 

should be the same for any resolution, so that the measure 

becomes equipment independent. 

2. Be consistent. That is, the ordering of objects 

provided by the measure should be the same at any 

resolution. 

3. Be efficient to calculate, preferably at 𝑂(𝑛) 

complexity. 

4. Be defined for all two-dimensional objects. 

5. Match the results of human perception. 

6. Be a measure of ‘roundness’, rather than ‘non-

roundness’. 

7. Be resolution independent. That is, the threshold 

used to discriminate circular from non-circular shapes 

should be the same for any resolution, so that the measure 

becomes equipment independent. 

 

 

5. Experimental results 
 

In this section, we demonstrate the applicability of the 

new compactness measure by a set of experiments. We 

first design a database of digital binary images to illustrate 

that the proposed compactness measure satisfies the 

criteria established by Ritter [37]. Second, we show how 

by using a square as a reference shape the NEF results to 

be invariant to geometric transformations. We use a square 

because in digital space is the most compact shape under 

any resolution; also, the square shape dominates over the 

rest of shapes. Third, we show that the NEF is a useful 

descriptor in classification process. For this, we employ 

the image data base MPEG-7 CE-1. 

 

5.1. Satisfaction of criteria 

 

In this section, we show that the proposed NEF 

measure satisfies the desired criteria defined by Ritter 

[37], and listed at the end of section 4. 

 

 
 

Fig. 3. Set of shapes used to test the proposed compactness 

measure 

 
In order to show how the NEF satisfies criteria 

number one and two, a set of digital images at different 

resolutions was obtained to verify its invariance to 

resolution changes. This set is illustrated in Fig. 3. Figure 

4 shows the NEF behavior when it is applied over the set 

of shapes of Fig. 3 at different resolutions, from 64x64 to   

248x248 pixels. To study the behavior of the proposed 

compactness measure under rotation transformations, all 

shapes at the resolution of 256x256 were rotated from 0 to 

185 degrees at steps of 5 degrees each time. Fig. 5 

summarizes the results. In both cases, the statistical tests t 

and z showed that NEF values keep uniform with a 

significance level of 0.05. 

 

 
 

Fig. 4.  𝑁𝐸𝐹 behavior under scale transformations for 

the set of shapes of Fig. 3 (color online) 

 

 
Fig. 5. 𝑁𝐸𝐹 behavior under rotation transformations for 

the set of shapes of Fig. 3 (color online) 
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Fig. 6. Shapes ordered according to value and human 

perception 

 
Third criterion tells us that the measure should be 

efficient to calculate, preferably at 0(n) complexity. The 

NEF uses shape perimeters; the computation is carried in 

one image scan. Therefore, the NEF meets this criterion. 

Fourth and fifth criteria stipulate that the measure 

should be defined for all two-dimensional objects and that 

the results should match those of human perception. In 

order to show how the NEF satisfies these two criteria, a 

second set of shapes was designed. In this experiment we 

show how the NEF is able to order this second set of 

shapes according to human perception. The non-ordered 

set is depicted in Fig. 6(a) while Fig. 6(b) illustrates the 

same set but ordered according to the NEF values. Table 1 

shows the NEF values in descended order. Thus, the NEF 

satisfies these two criteria.       

Criterion six is not applied to NEF measure for NEF 

is a compactness measure over a digital space where the 

most compact shape is the square [38]. 

The NEF was also tested in the 3-D case with six 

shapes shown in Fig. 7. Table 2 shows their compactness 

values. As shown in Table 2, intuition is correct, the 

sphere and the bird were ordered as the most compact 

shapes, while the octopus and the dragon were ordered as 

the least compact. 

 

 

Table 1. NEF values obtained from Fig. 6 shapes ordered from minor to mayor according with the degree of compactness 

 

FEN Shape FEN Shape FEN Shape FEN Shape 

1.000 R20 1.394 R19 2.727 R12 3.423 R14 

1.096 R29 1.399 R22 2.748 R16 4.034 R7 

1.116 R21 1.548 R17 2.782 R4 4.729 R9 

1.129 R27 1.667 R23 3.078 R6 5.534 R8 

1.146 R28 2.300 R3 3.107 R5 6.292 R18 

1.153 R10 2.409 R13 3.111 R2   

1.216 R26 2.636 R24 3.149 R11   

1.308 R1 2.724 R25 3.187 R15   

 
 

   
(a) (b) (c) (d) (e) (f) 

 

Fig. 7. 3-D digital shapes of (a) a sphere, (b) a bird, (c) a bull, 

(d) a Chinese dragon, (e) a dragon, (f) an octopus (color online) 

 

Table 2. Compactness values in terms of the   of the 3-D 

voxelated shapes shown in Fig. 7 

 
Digital region Area Volume NEF 

Sphere  30872 276569 1.2171 

Bird  18646 71759 1.8372 

Bull  64670 357664 2.1764 

Chinese 

dragon 

86476 375119 2.8441 

Octopus  78312 209910 3.8772 

Dragon  58194 114025 4.4187 

 
 

 

 

 

5.2. Application of the shape classification 

 

We next show that the NEF is useful for 2-D binary 

shape classification. For this, we make use of the MPEG-7 

CE-1 data base that contains more than 1000 binary digital 

shapes belonging to 70 different categories. 

We tested the efficiency of the NEF combined with 

the HU moments invariants in the classification process. 

We evaluated the performance of several classifiers 

implemented in WEKA testing classifier platform.  

For validation accuracy, we used classical statistical 

10-crossfolds approach. For the first experiment, we used 

HU moments alone; results appear reported in Table 3. In 

order to verify whether the NEF is a convenient shape 

descriptor, we performed a second experiment. In this 

case, the NEF was used together with Hu moments; results 

appear reported in Table 4. 

The accuracy percentages over the MPEG-7 CE-1 

data base show that adding the   to the descriptor vector 

increases efficiency of all the classifiers.  

This reinforces the asseveration stated in [12 and 17] 

that the compactness measure is useful to get better 

classification results. The NEF keeps this feature without 

the weakness of NDC measure. 
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In order to appreciate the discriminatory power of the 

proposed measure, we proceeded to test it with two non-

linearly separable classes. Figs. 8 and 9 depict the two 

testing classes while Table 5 shows the classification 

results. 

From the results shown in Table 5 we observe that in 

all cases the addition of the   to the describing shape vector 

helps improving the classifier efficiency. We can also 

appreciate that the performance of the chosen classifiers is 

similar. However, the k-NN classifier with   provided 

better classification results. 

If we would like to have better efficiencies we would 

need to 1) add more features to the describing vector, 2) 

apply a feature selection approach to an initial feature set 

to get the best combination, or 3) look for a better 

classifier. 

 

 

 

 

 

 

 
 

Table 3. Classification results using different classification approaches and only HU moments 

 

Classifier\Descriptor Hu1 Hu2 Hu3 Hu1,Hu2 Hu1,Hu3 Hu2,Hu3 Hu1,Hu2,Hu3 

  Classified 

Naïve_Bayes 17.14% 14.71% 8.64% 27.07% 26.93% 28.43% 37.64% 

1NN 27.21% 26.36% 11.21% 48.57% 45.29% 47.14% 58.71% 

3NN 23.36% 22.07% 10.07% 41% 38.29% 38.93% 50.86% 

5NN 18.29% 21.43% 10.64% 36.57% 32.07% 37.14% 45.71% 

j48 20.71% 20.14% 9.86% 42.93% 41.29% 36.00% 51.93% 

Bagging 20.36% 22.21% 12.50% 42% 41.29% 42.71% 54.86% 

BayesNet 10.50% 11.57% 8.29% 24.07% 24% 25.29% 36.86% 

Decision Table 10.50% 11.64% 6.79% 24% 24.29% 25.79% 36.50% 

NaiveBayesUpdatable 16.50% 15.07% 8.36% 27.29% 26.64% 28.36% 37.36% 

RandomCommittee 26.86% 26.57% 11.21% 48% 44% 44.14% 57.50% 

RandomForest 26.21% 26.57% 11.43% 49.07% 47.07% 45.36% 60.43% 

RandomSubSpace 17.71% 21% 13.43% 24.50% 23.64% 24.29% 43.93% 

 

 
Table 4. Classification results using different classification approaches, HU moments and NEF 

 

Classifier\ 

Descriptor 

Hu1 

FEN 

Hu2 

FEN 

Hu3 

FEN 

Hu1,Hu2 

FEN 

Hu1,H

u3 FEN 

Hu2,Hu3 

FEN 

Hu1,Hu2,H

u3 FEN 

 Classified 

Naïve_Bayes 36.29% 38.07% 31% 44.50% 46.86% 49.57% 52.79% 

1NN 43.07% 39.71% 32.57% 51.50% 50.43% 51.93% 60.43% 

3NN 39.86% 38.50% 29.14% 46.64% 46.93% 47.29% 51.36% 

5NN 40.14% 36.64% 29.50% 45.79% 45.21% 46.57% 49.21% 

j48 42.50% 43.71% 36.36% 53.86% 55.43% 56.36% 61.43% 

Bagging 43.71% 45.36% 40% 55.93% 58.50% 59.14% 64.36% 

BayesNet 30% 32.36% 25.21% 40.43% 41.50% 46.93% 51.43% 

Decision 

Table 

29.57% 31.14% 25.71% 38.50% 42.29% 44.14% 44.43% 

Naïve_Bayes 

Updatable 

36.29% 37.86% 30.79% 44.79% 48.79% 50.57% 53% 

Random 

Committee 

44.14% 44.21% 35.29% 57.50% 58% 58.43% 68.07% 

Random 

Forest 

44.93% 46.79% 38% 60.36% 62.14% 62.21% 69.71% 

Random Sub 

Space 

24.36% 25.36% 21.93% 46.86% 45.50% 46.57% 55.93% 
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The accuracy percentages over the MPEG-7 CE-1 

data base show that adding the NEF to the descriptor 

vector increases efficiency of all the classifiers. This 

reinforces the asseveration stated in [12 and 17] that the 

compactness measure is useful to get better classification 

results. The NEF keeps this feature without the 

weakness of NDC measure. 

In order to appreciate the discriminatory power of 

the proposed measure, we proceeded to test it with two 

non-linearly separable classes. Figs. 8 and 9 depict the 

two testing classes while Table 5 shows the 

classification results. 

From the results shown in Table 5 we observe that 

in all cases the addition of the NEF to the describing 

shape vector helps improving the classifier efficiency. 

We can also appreciate that the performance of the 

chosen classifiers is similar. However, the k-NN 

classifier with   provided better classification results. 

If we would like to have better efficiencies, we 

would need to 1) add more features to the describing 

vector, 2) apply a feature selection approach to an initial 

feature set to get the best combination, or 3) look for a 

better classifier. 

 

 
 

Fig. 8. Set of different chicken shapes for the first class 

 

 
Fig. 9. Set of different bird shapes for the second class 

 

 

Table 5. (a) Classification accuracy using 10 cross fold validation and 1-NN over the classes for Figs. 8 and 9 (b) Classification 

accuracy using 10 cross fold validation and j48 tree over the classes in Figs. 8 and 9. (c) Classification accuracy using 10 cross 

fold validation and NaiveBayese over the classes for Figs. 8 and 9 

 

1-NN with 10 

crossfold 

Tree (j48) with 10 

crossfold 

NaiveBayes with 10 

crossfold 

Test 1. First Hu moment 

Correctly 

classified 

67% Correctly 

classified 

55% Correctly 

classified 

55% 

misclassified 37% misclassified 45% misclassified 45% 

Test 2. First Hu moment and NEF 

Correctly 

classified 

83% Correctly 

classified 

75% Correctly 

classified 

75% 

misclassified 17% Misclassified 25% misclassified 25% 

Test 3. First and second Hu moments 

Correctly 

classified 

72% Correctly 

classified 

50% Correctly 

classified 

72.5% 

misclassified 28% misclassified 50% misclassified 27.5% 

Test 4. First and second Hu moments and NEF 

Correctly 

classified 

93% Correctly 

classified 

75% Correctly 

classified 

80% 

Misclassified 7% Misclassified 25% misclassified 20% 

 

6. Conclusions 
 
In this work, a compactness measure for a digital 

region composed by square cells was proposed. 

Nowadays, every measure of compactness is a function 

where many domain elements could have one element of 

codomain. In others words, many shapes could have a 

same compactness value. Therefore, the 𝑁𝐸𝐹 being a 

compactness measure is possible that many shapes could 

have the same value of 𝑁𝐸𝐹. 

Through experimentation, we have seen that the 

proposed measure describe well the morphological 

changes that the digital region has. Obtained results have 

are well correlated with human perception. The 𝑁𝐸𝐹 is a 

reference shape measure where the value of compactness 

is determined by the ratio between two perimeters, the 

perimeter of the digital region and the perimeter of the 

square with similar area as reference shape. The 𝑁𝐸𝐹 

can support the changes of resolution on the digital 

region and it can be applied for 3-D shapes as well. 

Through experimentation we have seen that the 𝑁𝐸𝐹 is 

simple and may be a useful descriptor for classifying 

digital regions. Moreover, the 𝑁𝐸𝐹 satisfies five of the 

six criteria established by Ritter defining a “good” 

compactness measure. 
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